

# Quantum Field Theory

## Exercises in preparation for the exam 3

### Exercise 1: two real scalar fields

We will continue the exercise 1 of Homework 2. Consider a theory with two real scalar fields  $\varphi_1$  and  $\varphi_2$  and the following Lagrangian :

$$\mathcal{L} = \frac{1}{2}\partial_\mu\varphi_1\partial^\mu\varphi_1 + \frac{1}{2}\partial_\mu\varphi_2\partial^\mu\varphi_2 + g\partial_\mu\varphi_1\partial^\mu\varphi_2 - \frac{m^2}{2}(\varphi_1^2 + \varphi_2^2) - \frac{\lambda}{4!}(\varphi_1^2 + \varphi_2^2)^2$$

a) For what values of  $g$  this represents a well defined QFT ? Find the masses of the physical particles.  
**This point you already computed in Exercise 1 of Homework 2, it is here for completeness.**  
b) Compute the cross section for the scattering of two heavier particles into two lighter particles.

### Exercise 2: scalar-fermions Lagrangian and large $N$

Consider  $N$  Dirac fields  $\{\psi_a\}$ ,  $a = 1, \dots, N$  and a scalar field  $\phi$ .

- Assuming both  $\phi$  and  $\psi$  have canonical kinetic terms, write the most general Lorentz invariant Lagrangian involving terms with canonical dimensions  $d \leq 4$  which is symmetric under  $U(N)$  rotations of the Dirac fields:

$$U_{ab}\psi_b(x), \quad U_{ab} \in U(N).$$

Is the most general Lagrangian also parity invariant?

*Hint:* prove that mass terms of the kind  $\psi\gamma_5\psi$  can always be removed via a chiral rotation  $\psi \rightarrow e^{i\alpha\gamma_5}\psi$ .

- Supposing that  $\phi$  is heavy enough and that the  $\psi_a$  have canonical Dirac mass term, compute the decay rate  $\Gamma$  of  $\phi$  at tree level. What happens (and why) in the  $N \rightarrow \infty$  limit?

### Exercise 3: modified $O(2)$ model

Consider the following model of 2 scalar fields and a Dirac fermion:

$$\mathcal{L} = \frac{1}{2}\sum_{i=1}^2(\partial_\mu\phi_i)^2 - \frac{m^2}{2}\sum_{i=1}^2\phi_i^2 - \frac{\lambda}{4}\left(\sum_{i=1}^2\phi_i^2\right)^2 + \bar{\psi}(i\cancel{D})\psi - g\bar{\psi}(\phi_1 + i\gamma_5\phi_2)\psi.$$

- Find the global symmetries of the system.  
*Hint:* it might help to decompose explicitly the Dirac field in terms of Weyl spinors.
- Draw all Feynman diagrams contributing to the process  $\psi\psi \rightarrow \psi\psi$  and write the matrix element.
- Compute the differential unpolarized cross section for the process  $\psi\psi \rightarrow \psi\psi$  in the case  $m = 0$ .